AUPCR Maximizing Matchings : Towards a Pragmatic Notion of Optimality for One-Sided Preference Matchings

نویسندگان

  • Girish Raguvir J
  • Rahul Ramesh
  • Sachin Sridhar
  • Vignesh Manoharan
چکیده

We consider the problem of computing a matching in a bipartite graph in the presence of one-sided preferences. There are several well studied notions of optimality which include pareto optimality, rank maximality, fairness and popularity. In this paper, we conduct an in-depth experimental study comparing different notions of optimality based on a variety of metrics like cardinality, number of rank-1 edges, popularity, to name a few. Observing certain shortcomings in the standard notions of optimality, we propose an algorithm which maximizes an alternative metric called the Area under Profile Curve ratio (AUPCR). To the best of our knowledge, the AUPCR metric was used earlier but there is no known algorithm to compute an AUPCR maximizing matching. Finally, we illustrate the superiority of the AUPCR-maximizing matching by comparing its performance against other optimal matchings on synthetic instances modeling real-world data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Stable matchings and preferences of couples

Couples looking for jobs in the same labor market may cause instabilities. We determine a natural preference domain, the domain of weakly responsive preferences, that guarantees stability. Under a restricted unemployment aversion condition we show that this domain is maximal for the existence of stable matchings. We illustrate how small deviations from (weak) responsiveness, that model the wish...

متن کامل

Characterizing a Set of Popular Matchings Defined by Preference Lists with Ties

In this paper, we give a characterization of a set of popular matchings in a bipartite graph with one-sided preference lists. The concept of a popular matching was first introduced by Gardenfors [5]. Recently, Abraham et al. [1] discussed a problem for finding a popular matching and proposed polynomial time algorithms for problem instances defined by preference lists with or without ties. McDer...

متن کامل

Popularity in the Generalized Hospital Residents Setting

We consider the problem of computing popular matchings in a bipartite graph G = (R ∪ H, E) where R and H denote a set of residents and a set of hospitals respectively. Each hospital h has a positive capacity denoting the number of residents that can be matched to h. The residents and the hospitals specify strict preferences over each other. This is the well-studied Hospital Residents (HR) probl...

متن کامل

What Matchings Can Be Stable? The Testable Implications of Matching Theory

This paper studies the falsifiability of two-sided matching theory when agents’ preferences are unknown. A collection of matchings is rationalizable if there are preferences for the agents involved so that the matchings are stable. We show that there are nonrationalizable collections of matchings; hence, the theory is falsifiable. We also characterize the rationalizable collections of matchings...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.09564  شماره 

صفحات  -

تاریخ انتشار 2017